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In dynamical systems, we iterate families of functions. Even the simple family of
parabolas of the form fc(x) = x2 + c, where c is a parameter, has interesting behavior
under iteration when one varies c. We look for periodic points (x-values which return
to themselves under iteration), and are especially interested in determining how they
change as the parameter varies. Typically, a small change in the parameter does not
affect the number or type of periodic points. If a change does occur, we call that a
bifurcation. It is common for a function to change from 0, to 1, to 2, to 4, to 8 pe-
riodic points, and so on. The quadratic family above exhibits such “period-doubling”
bifurcations. But is it possible for n new periodic points to appear all at once? In this
paper, we introduce examples of functions with this atypical behavior. These in turn
lead to results about the stabilities of periodic points near a bifurcation. Our proofs
make surprising use of two of the fundamental results of calculus: the Intermediate
Value Theorem and the Mean Value Theorem.

This paper grew from two undergraduate research projects on bifurcations in dy-
namical systems, with students Jon Armel, Missy Larson, Rana Mikkelson, and Dan
Wolf. Although much of this work could be considered within the framework of more
advanced singularity theory, we choose to present it in this more accessible context.

Generic bifurcations
Let f : R → R be a smooth function. Given a point x0 ∈ R, the nth iterate (where
n ∈ N) of x0 under f is:

f n(x0) = f ( f ( f (. . . f (x0))))︸ ︷︷ ︸
n times

= xn. (1)
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The orbit of a point, x0, is the sequence {x0, x1, x2, x3, . . . }. In this paper we focus on
fixed points( f (x0) = x0) and periodic points ( f n(x0) = x0 for some n). These points
can be classified into three groups: attracting, repelling, and neutral. Using Devaney’s
definition [2], a periodic point x0 for f of period n is said to be attracting or stable if
|( f n)′(x0)| < 1, repelling or unstable if |( f n)′(x0)| > 1, and neutral if |( f n)′(x0)| = 1.
It is shown in [2] that around an attracting fixed point x0 there is an interval in which
orbits move closer to x0 under iteration, and around a repelling fixed point there is an
interval in which orbits (other than the fixed point) eventually leave under iteration.
For a neutral fixed point a variety of behaviors can occur.

Bifurcations are places where the number and/or stability of periodic points change
as the parameter, c, varies. A useful way to visualize bifurcations is with a bifurcation
diagram, a graph of the x-values of both attracting and repelling periodic points versus
c. As an example, Figure 1 shows the points of period two for x2 + c. Note that show-
ing the points of period two also shows all fixed points. (In our bifurcation diagrams,
solid lines represent attracting points and dashed lines represent repelling points. For
more about bifurcation diagrams, see [4].)

ABC
c

x

Figure 1. Bifurcation diagram for x2 + c. From right to left: at A a new fixed point appears; at
B, the fixed point changes stability, and simultaneously splits into a 2-cycle. At C, the 2-cycle
changes stability and a 4-cycle (not shown) appears.

The most common bifurcations are period-doubling and tangent. A period-doubling
bifurcation is one in which at some value of c a fixed point changes its stability and
gives rise to a two-cycle which retains the original stability. This occurs in Figure 1
at B. Note that in a period doubling bifurcation the fixed point that splits doesn’t dis-
appear; it remains, but changes stability. A tangent bifurcation (or saddle-node bifur-
cation) is one in which for values of c < c0 there are no fixed points. Then for some
particular value, c0, there is one neutral fixed point, and for any c > c0 there are two
fixed points, initially one of which is attracting and the other repelling. It is also pos-
sible for these inequalities to be reversed, as in Figure 1 at A. These two bifurcations
are called generic as they will typically persist under perturbation of the family.

Atypical bifurcations
All other bifurcations are atypical. Two types commonly discussed in the literature are
the pitchfork and the transcritical. A pitchfork bifurcation is one in which a single fixed
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Figure 2. A pitchfork bifurcation (left) and a transcritical bifurcation (right).

point splits as c increases (or decreases) into three fixed points of alternating stability
(see Figure 2). A transcritical bifurcation is one in which two periodic points of the
same period merge into one, then split apart again. Other than at the bifurcation value,
one of these periodic points is always attracting and the other is always repelling (see
Figure 2).

While examining atypical bifurcations, we discovered a new type which we call a
sprinkler bifurcation. This is similar to a tangent bifurcation but instead of two, any
number of curves of new fixed points emanate from a single point. Specifically, for
any natural number n and any x0 and c0 in R, there exists a family of smooth functions
fc : R → R for which there are no fixed points for c < c0, one fixed point when c = c0,
and n fixed points when c > c0. (See Figure 3. The line with long dashes represents
neutral points.)
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n = 6 n = 5

(0, 0) (0, 0)

Figure 3. A sprinkler bifurcation for n = 6 (left) and n = 5 (right).

There are many ways to create examples. The ones that follow were created by the
students. In each of the cases, the bifurcation is at c = 0, x = 0.

Case 1. If n is even, then

fc(x) = x + (x2 − c)(x2 − 2c) · · ·
(

x2 − n

2
c
)

(2)

will have the desired number of fixed points.
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Case 2. If n is odd, n ≥ 3, let

p(x) =
{

e−1/x2
x �= 0

0 x = 0.
(3)

As is well-known (see [3, pp. 111–112]), p(x) is a smooth function, and its deriva-
tives of all orders at x = 0 are zero. Then the piecewise function h(x) below is also
smooth:

h(x) =

⎧⎪⎨
⎪⎩

2e−1/x2
x < 0

e−1/x2
x > 0

0 x = 0.

(4)

To construct a function with a three-stream sprinkler bifurcation, we let

fc(x) = x + (h(x) − c)(p(x) − c). (5)

For odd order n ≥ 5, we simply multiply the second term of fc(x) by n−3
2 terms

of the form (x2 − kc) with k ∈ N, each yielding two new solutions for c > 0. For
example the bifurcation diagram of

x + (h(x) − c)(p(x) − c)(x2 − c)(x2 − 2c) (6)

has seven new streams of fixed points emanating from the origin.

Case 3. The case n = 1 is special. Let

g(c) =
{

e−1/c2
c < 0

0 c ≥ 0,
(7)

and let fc(x) = x + x2 + g(c). When c ≥ 0, f reduces to x2 + x , which has one fixed
point at x = 0. When c < 0, the fixed point equation reduces to a quadratic with non-
real roots. Therefore fc has no fixed points for c < 0.

Using similar functions we created double sprinkler bifurcations such as the one in
Figure 4.

c

x

0

0

Figure 4. A double sprinkler bifurcation for m = 3, n = 5.
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The Alternating Stability Theorem
Now that we had many examples of bifurcations to explore, we noticed a number of
patterns. For example, when an odd number of new fixed points appeared in a bifurca-
tion, one of the new fixed points was neutral. Eventually we could prove some general
properties of bifurcations of fixed points. To describe these, further background is re-
quired.

We say a fixed point x0 of fc0 is continuable if the only fixed points of fc near
(c0, x0) lie on the graph of a continuous function of c in the c − x plane which contains
(c0, x0). It is shown in [1, pp. 462–463] that if x0 is a fixed point of fc0 and f ′

c0
(x0) �= 1,

then (c0, x0) is continuable. This implies that fixed point bifurcations in which new
fixed points appear occur only when the derivative at the fixed point is one.

Notice in the transcritical bifurcation (Figure 2), the even sprinkler bifurcation (left
side of Figure 3), and the double sprinkler bifurcation (Figure 4) that the stabilities
of the fixed points alternate near the bifurcation. We were able to verify that in any
bifurcation of non-neutral fixed points where a group of curves meet at a single point
(c0, x0), the stabilities of the curves must alternate for c near c0.

The Alternating Stability Theorem. Let n be an integer, with n ≥ 2. Consider
any bifurcation where n curves of non-neutral fixed points intersect at a point (c0, x0)

in the c-x plane. Then there exists an interval with c0 as an endpoint in which the
stabilities of the curves alternate.

Proof. Recall that at a bifurcation point we must have f ′
c0

(x0) = 1. Therefore there
is a neighborhood of (c0, x0) on which f ′

c(x) is positive. We use proof by contradiction
and suppose that for a given c in this neighborhood two adjacent fixed points of fc,
a and b, have the same stability. We argue that there must exist a third fixed point
between them. Assume that both a and b are attracting. (The argument for repelling
fixed points is analogous.) Since the derivatives at a and b are positive, this leads to a
graph of fc like Figure 5. It seems clear from this graph that the smooth function fc

must have a fixed point between a and b. The details of the formal argument of this
fact are interesting, and rely on two of the most important theorems from calculus, the
Intermediate Value Theorem (IVT) and the Mean Value Theorem (MVT).

Suppose 0 < f ′
c(a) < 1 and 0 < f ′

c(b) < 1 (as in Figure 5). The MVT implies that
fc crosses the line y = x from above to below at a as follows. Since f ′

c is contin-

y

a d e b

x

Figure 5. The line y = x contains attracting fixed points a and b; d and e are found using the
MVT.
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uous, there is a neighborhood of a, say I = (a − δ, a + δ), such that 0 < f ′
c(x) <

1 for all x ∈ I . Consider an x ∈ I . By the MVT, there exists z between a and x
such that fc(x) − fc(a) = f ′

c(z)(x − a). If x < a, then since 0 < f ′
c(z) < 1, we

have fc(x) − fc(a) > x − a, so fc(x) − x > fc(a) − a = a − a = 0. If x > a, then
fc(x) − fc(a) < x − a, so fc(x) − x < 0. The same is true at b. Therefore, there is a
positive ε < b−a

2 such that there exists some d ∈ (a, a + ε) and e ∈ (b − ε, b) with the
property that fc(d) − d < 0 and fc(e) − e > 0. So by the IVT there is an x between d
and e such that fc(x) − x = 0. Hence x is a fixed point between a and b, contradicting
our assumption that a and b are consecutive fixed points.

Note that this theorem applies to the sprinkler bifurcation, in which n new fixed
points emanate from a single fixed point, as the single fixed point is a point at which
curves of fixed points intersect. This theorem also extends to periodic points, as these
are fixed points of the function f p

c for some p.

The High-Low Stability Theorem
We can further describe the behavior of periodic points near certain bifurcations. The
points not only alternate stability, but the smallest and greatest periodic points must
retain their stability after the bifurcation.

The High-Low Stability Theorem. Consider a bifurcation where m non-neutral
curves of fixed points intersect in the c-x plane at a point (c0, x0), and then split into
n curves. Suppose there is a rectangular neighborhood around (c0, x0) in which these
are the only fixed points. Then the curve consisting of the smallest fixed points has the
same stability both before and after the intersection, as does the curve consisting of
the largest.

Proof. We prove the result for the curve consisting of the smallest fixed points.
(The case for the largest follows similarly.) For each c value, denote the least of the
fixed points by xc. Using proof by contradiction again, we assume (without loss of
generality) that (near c0) for c < c0, xc is an attracting fixed point and for c > c0, xc is
a repelling fixed point.

Because (c0, x0) is a bifurcation, f ′
c0

(x0) = 1. We construct a rectangular neighbor-
hood N = {(c, x) | |c − c0| < β, |x − x0| < ε} which satisfies the following condi-
tions:

• For all (c, x) in N , 1
2 ≤ f ′

c(x) ≤ 3
2 ,

• The curve xc (which can be shown to be continuous) leaves the sides of the
neighborhood as in Figure 6.

c1 c2

(c0, x0)

IJ

Figure 6.
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The first condition can be achieved because f ′
c0

(x0) = 1, and the second can be
achieved by shrinking the width of the rectangle as necessary.

Let c1 ∈ (c0 − β, c0). By assumption 1
2 < f ′

c1
(xc1) < 1. Let J = (x0 − ε, xc1). Then

by the same argument as in The Alternating Stability Theorem, there exists an x ′ ∈ J
with fc1(x ′) > x ′. Since xc1 is the smallest fixed point in N for fc1 , we must have
that fc1(x) > x for all x ∈ J . (If there were a point xi ∈ J with fc1(xi ) ≤ xi , there
would have to be a fixed point in J less than xc1 , which is a contradiction.) Let c2 ∈
(c0, c0 + β). By assumption f ′

c2
(xc2) > 1. Let I = (x0 − ε, xc2). As above we conclude

that fc2(x) < x for all x ∈ I .
Since I and J are open intervals that share a left endpoint, I ∩ J �= ∅. Thus, we

can pick x∗ ∈ I ∩ J so x∗ is less than the smallest fixed point in N between c1 and c2.
Then since x∗ ∈ J , fc1(x∗) > x∗, and because x∗ ∈ I , fc2(x∗) < x∗. Now fc(x∗) is
a continuous function of c, so by the Intermediate Value Theorem there is some c∗ ∈
(c1, c2) such that fc∗(x∗) = x∗. But xc∗ is the least fixed point in (c0 − β, c0 + β) by
assumption, and x∗ is a fixed point less than xc∗ , so we have a contradiction. Therefore
the least fixed point cannot switch stability when curves of fixed points intersect, and
analogously neither can the greatest.

This theorem applies in situations like a pitchfork bifurcation, where there is one
fixed point before the bifurcation and three after. This result can also be applied to
periodic points.

Neutrality
The above results require non-neutral periodic points in a neighborhood of the bifurca-
tion. We now have the necessary theorems to discuss the point about neutrality raised
earlier.

The Odd Fixed Points Theorem. If the difference in the number of fixed points
before and after a bifurcation at a point (c0, x0) is odd, there exists a one-sided neigh-
borhood about (c0, x0) in which at least one of the fixed points is neutral.

Proof. Suppose that the bifurcation occurs at the point (0, 0) and that for c < 0,
fc has m fixed points, for c = 0, fc has one fixed point, and for c > 0, fc has m + n
fixed points where n is odd. There are two cases, when m �= 0 and when m = 0. The
first follows easily from the The High-Low Stability Theorem and the The Alternating
Stability Theorem.

Suppose then that m = 0. Our goal is to construct a function gc that has the same
fixed points (with the same stabilities) as fc for c > 0, but that has two fixed points for
c < 0, and then appeal to the case m �= 0.

Define gc as follows.

gc(x) = fc(x)(x2 + c) − x3 − (c − 1)x . (8)

Suppose that x0 is a fixed point for gc. Then fc(x0)(x2
0 + c) − x3

0 − cx0 + x0 = x0,
which simplifies to

( fc(x0) − x0)(x2
0 + c) = 0. (9)

When c > 0 the only solutions to this equation are the fixed points of fc, and when
c < 0 since fc(x) = x has no solutions by assumption, the equation has exactly two
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solutions, ±√−c. Thus gc has all of the fixed points of fc and two new fixed points
when c < 0.

We must also show that when c > 0, the fixed points of fc have the same stability
when they are considered as fixed points of gc. To do this, we calculate the derivative
of gc.

g′
c(x) = f ′

c(x)(x2 + c) + 2x fc(x) − 3x2 − c + 1 (10)

We only need evaluate this at fixed points of fc, so we can substitute fc(x) = x . The
equation simplifies to

g′
c(x) − 1 = ( f ′

c(x) − 1)(x2 + c) (11)

Note that x2 + c is positive; so if f ′
c(x) = 1, then g′

c(x) = 1; if f ′
c(x) > 1, then

g′
c(x) > 1; and if f ′

c(x) < 1, then g′
c(x) < 1. Thus, the stability of fixed points for

fc is exactly the same as for gc. We can now apply the case when m �= 0 to gc to show
it has a curve of neutral fixed points for c > 0, therefore fc has a curve of neutral fixed
points for c > 0.

Conclusion
Our functions must be smooth in both x and c. For example, consider the family
fc(x) = 2|x | + c, which is continuous, but not differentiable, in x . The bifurcation
diagram shows many new periodic points being born at c = 0, but all of these new
periodic points are repelling. Clearly the alternating fixed point theorem does not hold
in this case.

c

x

0

Figure 7. The bifurcation diagram for fc(x) = 2|x| + c.

The above theorems help to characterize the stability of periodic points near bifur-
cations. As a consequence of these theorems, we understand the stability changes that
must occur in pitchfork and transcritical bifurcations. In the future, we hope to con-
sider the existence and the stability of bifurcations where points of different periods
meet. Can curves of period two and period three points intersect? Can new points of
periods four and five emanate from a single point? If so, what can be said about the sta-
bility of these periodic points near the bifurcation? In addition, what can we conclude
if we allow the possibility of neutral periodic points near a bifurcation?
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Summary. After discussing common bifurcations of a one-parameter family of single vari-
able functions, we introduce sprinkler bifurcations, in which any number of new fixed points
emanate from a single point. Based on observations of these and other bifurcations, we then
prove a number of general results about the stability of fixed points near a bifurcation point.
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A Little Love Story

She reads her Calculus text:

Given an epsilon
do si do
find a delta
if you can
Approach
oh so close
Delta on the domain
pursues epsilon on the range
along lazy eight lane
ad infinitum

She begins to doze:

Delta lassoes epsilon
they get married and go live
on the one-over-ex-squared ranch
with acreage they can paint
but never walk around
not enough fence in the universe
to contain it
but enough paint to cover it
strange, so strange

She dreams:

Their herd of discrete cattle
roam the infinite range
bounded by zero below
with domain greater than one
heading off into the horizon
they live happily
ad infinitum.

—Bonnie Shulman (bshulman@bates.edu) Bates College
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