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Put your wallet on the table next to mine. The game is this: The person whose wallet
has less money wins all the money in the other person’s wallet. Do you want to play?

You might think along these lines: “I don’t know how much money that other wallet
has, and I’'m not even sure how much is in mine. If I have more money, then I’ll lose it,
but if I have less, I’ll win the larger amount. I have no idea what the odds are, but since
I stand to win more money than I can lose, it seems like a good game.” Upon further
thought, you realize that both players are probably thinking the same thing! Can both
be correct?

How can a game favor both players? It can’t! In any two-person, zero-sum game
(where one person wins what the other person loses), it is not possible for the game to
be advantageous to both players. Believing that the wallet game favors both players is a
paradox, one discussed by Martin Gardner [3]. A variation of this game was originally
posed by Kraitchik [1] where the person with the greater amount in her wallet gives
the difference to the other.

What if you and I decide to play this game day after day? We will need to establish
a few more rules, because it would not be a very interesting game if neither of us ever
carried any money. Since we do not want to mandate a minimum amount that must be
carried, we agree that on average (and in the long run) we will carry the same amount
of money. How should you decide how much to carry each day?

Kraitchik shows that if the amount of money each player carries is uniformly (dis-
cretely) distributed between O and some large x (he uses the total amount of money
that has been minted to date), then the game is fair (each player’s expected payoff is
zero). Gardner notes that this does not explain the source of the paradox. Merryfield,
Viet, and Watson [2] argue that the source of the apparent paradox is that the players
do not take into account the probabilities of winning and losing. They argue that if the
amounts of money in the players’ wallets are determined by independent, identically
distributed random variables, then the game is also fair. Hence, the game is fair when
the players are required to use the same distributions.
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It is natural to ask if requiring the players to carry the same amount on average might
also ensure a fair game. When “on average” is interpreted as requiring both players’
distributions to have the same mean, Merryfield, ef al. point out that the game may not
be fair. In fact, they give an example that shows it is possible to have a smaller mean
than one’s opponent and still be at a disadvantage (that is, have a negative expected
payoff). At the end of their paper, they pose the following question:

If we suppose that the distributions of players A and B are required to have the
same means, is there a strategy that player A could adopt to have a winning edge?
In other words, is there a preferred distribution (or a winning strategy)? [2]

The answer to this question depends upon whether knowledge of an opponent’s
strategy, not just the mean, is assumed. In this article, we show that if a player knows
her opponent’s strategy, then she can construct a winning strategy which has the same
positive mean or median as her opponent. This implies that there is no optimal strat-
egy (or Nash equilibrium) when players are restricted to use strategies with the same
mean or median. We consider both the discrete and continuous cases. Throughout, we
assume that players’ distributions are independent.

Discrete distributions Consider an example using discrete distributions. Suppose
players A, B, and C use strategies given by independent random variables X, Y, and Z,
respectively. Suppose X places probability 1 on $2, ¥ places probability 1/2 on both
$1 and $3, while Z places probability 3/4 and 1/4 on $1 and $5, respectively. Notice
that the mean of each distribution is $2. Using the notation developed by Merryfield,
et al. [2], let W, be the random variable returning the amount of money that player A
wins (or loses) when playing against player B, that is,

-X ifX>Y
WA/BZ Y fX <Y
0 ifxX=Y.

If players A and B use strategies X and Y, respectively, X is preferred to Y, denoted
X > Y,if and only if E(W,,5) > 0.

Suppose players A and B play the Wallet Game. Player A loses $2 when player B
carries $1 and wins $3 when B carries $3. Player A’s expected payoff against player B
is E(Wasp) = 3(—2) + 3(3) = 5. Thus, strategy X is preferred to strategy Y.

The following matrix, which is similar to one used by Kraitchik [1], is used to
compute E(Wg,c). The (i, j)™ entry of the matrix, m;;, is the amount that player B
wins or loses when carrying y; in his wallet, while player C is carrying z; in her wallet;
this occurs with probability p;q;.

go=3/4|q=1/4
B/C Zo=1 Z1=5
po=1/2 y=1 0 5
=12 y =3 -3 5

Calculating E(Wp,c) requires summing the products of the matrix entries and their
probabilities; in this case,
Shpe 3 3 1 1 1
E(Wg/c) = piqimi; = §(O) + g(—?’) + §(5) + §(5) =3
i=0 j=0
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and Y > Z. Finally, if players A and C play, then E(Wa;c) = 2(=2) + 3(5) = —4
and Z > X.

The lack of transitivity of X > Y, Y > Z, and Z > X suggests that there may not
be a “best” strategy in the discrete case when both players are required to have the
same positive mean. The following proposition confirms this, answering the question
posed by Merryfield, et al. [2], by showing that there is no distribution that is preferred
to all others, that is, there is no optimal distribution. (Recall that Y has finite support if
positive probability is placed on a finite number of values.)

PROPOSITION 1. For any discrete random variable Y with finite support, there
exists a discrete random variable X with ux = py such that X > Y.

Proof. Suppose player A knows that player B carries an amount of money given
by the random variable ¥ whose probabilities, g;, are distributed on a finite set of
monetary values y;, such that yo = O and y; < y;4, foralli < n. Since the mean of Y,
Wy, is positive, it follows that gy # 1.

We construct for player A a random variable X that defeats Y. Player A’s strategy is
to win almost every game; however, when player A loses, she forfeits a large amount
of money. Interestingly, player A need only place positive probability on three values,
regardless of the complexity of player B’s distribution. Define X by the distribution of
probabilities p; on monetary values x; as follows: py = goonxo =0, p; onx;, = % i
and p, = 1 — pp — p1 on x,, where p; and x; satisfy the following conditions,

MY_%plyl
l—po—p1

(I = po)uy

<pi<l—py and x, =
my + 5(1 = po)yi

Notice that p, exists since py = go # 1. Also, x; is defined such that uy = uy.

As in the example above, it is convenient to view the Wallet Game in matrix form.
Although we do not know how x, compares to the y;s, we assume the worst-case
scenario for player A, that is, x; is greater than the largest monetary value that player B
carries, y,. As before, the matrix entries are payoffs to player A.

qo0 q1 q2 q3 cee | 4n

A/B Yo | i Yol ¥ || Y

Po X0 0 Y1 Y2 Y3 | ... Yn
P xi=y1/2 | —x 1 20 || W
P2 X2 —Xo | —=X2 | —X2 | —X2 | ... | —X2

The expected values of the first column and first row cancel because

po(@iy1 + q2y2 + g3ys + - - + @uyn) + go(—p1x1 — pax2) = poity — qopex = 0.

Since x; < y; when i > 0, the remaining entries in the second row yield a positive
contribution to the expected value for player A in the amount of p;(g;y1 + q2y2 +
-+ ¢g,y,), or p1uy. In this worst-case scenario, x, > y, implies that the remaining
entries in the third row contribute the following to the expected value of player A

1
g+t -+ g)x=—1—po—p)(l —go)x, = — <MY - §p1y1> (1 = qo).
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Hence, we have

1
E(Wa;B) = prity — [y — 5[’1)’1](1 —qo0) > 0,

by the definition of p,. Therefore, X > Y. [ |

In our earlier example, and as indicated in the above proposition, playing the mean
with probability one can be defeated. However, it is a winning strategy against all other
symmetric, discrete distributions. In this case, player A loses half of the time with loss
Wx, but wins half of the time with a gain that is greater than 1 x. Hence, the expected
payoff is positive. In the next section we focus on continuous density functions and
examine the roles of both the mean and median.

Continuous Density Functions Suppose that random variables X and Y have con-
tinuous density functions f and g, respectively. Recall that a continuous density func-
tion never places positive probability on a single value; that is, the probability of a
player carrying a specific amount of money is zero. As in the discrete case, if g is
a symmetric density function then playing the mean with probability one (or equiva-
lently, the median) is preferred to g. Although playing the mean with probability one
does not satisfy our restriction to continuous density functions, this idea is easily mod-
ified to show the existence of a continuous density function with the same mean (and
median) that defeats the original symmetric density function.

We do this in the following proposition, considering nonsymmetric, continuous den-
sity functions where players are required to have the same median. Denote the median
of the random variable X as my. Thus it is equally likely that the player has more than
or less than my.

PROPOSITION 2. For any random variable Y with a continuous density function,
there exists a random variable X with a continuous density function where my = my
and X =Y.

Proof. Suppose player A knows that player B carries an amount of money given
by the random variable Y with probability density function g. The discrete response
X = my, where my is the median of Y, is preferred to Y. This follows since the median
my loses half of the time with a loss of my and wins half of the time, averaging a payoff
greater than my. Therefore, the expected payoff for player A is positive. However, this
is a discrete distribution. To construct a continuous distribution, playing the median can
be considered as the limit of a sequence of uniform distributions where the variances
tend to zero. Since the expected value of playing the median is positive, there exists a
uniform distribution with my = my and positive expected value. |

Since there is no optimal continuous density function when the distributions are
required to have the same median, let’s consider the case where they have the same
mean. The following proposition shows that there is no optimal continuous density
function in this case either. The proof is constructive, as in the discrete case, and the
motivation for the strategy is similar. Once again, Player A’s strategy is to win more
frequently than player B, while infrequently losing a large sum of money. We construct
a density function that matches the opponent on [0, my], and is piecewise uniform on
both [my, my + €] and [n — €, n], where n and € are selected such that yxy = uy and
X =Y.

PROPOSITION 3. For any random variable Y with a continuous density function,
there exists a random variable X with a continuous density function where ux = [y
and X > Y.
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Proof. Suppose player A knows that player B carries an amount of money given by
the random variable ¥ with continuous density function g. Suppose g has mean
uy and median my. As in the discrete proof, the goal is to construct a density
function that defeats g while having the same mean. Let y be the average condi-
tional expected value of g conditioned on being in the interval [my, c0), that is,
v =[ny8dy/ [, g dy =2 yg(»)dy.

Let X be a random variable with density function f defined by

g(x) on[0, my]
L=< on (my, my + €]

fy=1 *

on[n — €, n)

[ R STEN

elsewhere,

where 0 < € < 1is selected so that n — € > my + €, where

1
pe VgL me
€ 2 €

and so that the following inequality holds:

oQ

€
2y (1 —¢€) g(y)dy > (y +e2— = —my +n1ye)
my-te 2
my+e€
+ 2(my +€)(1 —¢€) g(y)dy. (D
my

Notice that the left side of (1) converges to ¥ as € approaches zero, while the right
side converges to ¥y — my. Also, n grows without bound as € approaches zero. There-
fore, a sufficiently small € can be chosen to satisty both inequalities. Although (1) and
the definition of n appear complex, selecting such an e guarantees that ;tx = (y and
X > Y as shown below.

Since f is equal to g on [0, my] and f is composed of piecewise horizontal line
segments on (my, 00), then, by the definition of #,

= —— —_ _.6 _——
Hx A yglyyay e € \my ) 5 n 5

my y o0
= f yenydy + = = / ye(y)dy = pry.
0 2 0

To see that X > Y, we employ a matrix again. As in the previous proof, we consider
the worst-case scenario for player A. For example, when X is in the interval [n — €, n]
and Y is in (my + €, 00), we assume that X loses n. Also, when X is in [my, my + €]
and Y isin (my + €, 00) then Y loses, on average, more than y . In the following matrix,
the entries are payoffs to player A. Let y; and y, be the average conditional expected
values of g conditioned on being in (my, my + €] and (my + €, 00), respectively.

3 I edy | [, () dy

A/B [0, my] (my,my +€] | (my+¢€,00)
% [0, my] 0 Y1 V2
55 Imy,my+el | —my+9 | —(my+e y
5 [n —€,n] —(n—3) —n —n
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The contribution to the expected value from the first row is

7/1 my+e€ ')/2 fw V
— d —= dy ) ==,
5 (/my gy y) + 5 ( mmg(y) y )
which cancels with the contribution from the first column since
y 1—e¢ ( n E) € ( e> _0
4 g J\UMrTy) 7 3g\"Ty) =

by definition of n. Computing the contribution to the expected payoff from the remain-
ing entries of the matrix, player A wins (or loses)

—ne (my + ) 1—¢ f’””é ) dy + 1—c¢
4 my + € ) oy gWy)ydy vy )

Substituting for n, (2) is positive if

f gy dy. (2

ny +e€

(o]

€
2y(1 —¢) gy)dy > (V +e— 5~ my +my6)

my+€

my+e€

+ 2(my +€)(1 —€) g dy.

my

This inequality holds by the selection of €. Therefore, X > Y. |

Game-theoretic conclusion Let’s interpret the propositions in this paper game-
theoretically. A pair of strategies is a Nash equilibrium if neither player, given knowl-
edge of her opponent’s strategy, can improve her outcome by deviating from her
strategy. Since the Wallet Game is a zero-sum game, at least one player must have a
nonpositive expected payoff. Using the constructions in the propositions, this player
can change her (discrete or continuous) distribution to yield a positive expected payoft.
So, there does not exist a Nash equilibrium in any of the cases we considered.

In game theory, the fundamental solution concept is the Nash equilibrium. Con-
sequently, the fact that there is no optimal strategy, hence no Nash equilibrium, may
seem troubling. It is interesting to note that while the existence of Nash equilibria is
often proved by variations or extensions of the Kakutani Fixed Point Theorem, this
theorem does not apply here as the hypotheses require the set of strategies to be com-
pact [4]. Neither the space of all discrete random variables with fixed means nor the
space of all continuous distributions with fixed medians or means are compact.

So what should you do when someone suggests playing the Wallet Game? Since
the standard game-theoretic assumption of knowing your opponent’s strategy is highly
unlikely, the authors advise readers to play the game at their own risk.

REFERENCES

1. M. Kraitchik, Mathematical Recreations, 2™ edition, Dover, New York, 1953.

2. K. Merryfield, N. Viet, and S. Watson, The wallet paradox, Amer. Math. Monthly 104 (1997), 647-649.
3. M. Gardner, Aha! Gotcha, W. H. Freeman and Company, New York, 1982.

4. D. Fudenberg and J. Tirole, Game Theory, MIT Press, Cambridge, MA, 1991.




